AI: Difference between revisions

From Hegemon Wiki
Jump to navigation Jump to search
Line 68: Line 68:
|-
|-
|text-gen
|text-gen
|anon8231489123-vicuna-13b-GPTQ-4bit-128g
|anonVic13B
|GPTQ-for-LLaMa-'''triton'''
|GPTQ-for-LLaMa-'''triton'''
|yes
|yes
Line 76: Line 76:
|-
|-
|text-gen
|text-gen
|anon8231489123-vicuna-13b-GPTQ-4bit-128g
|anonVic13B
|GPTQ-for-LLaMa-'''triton'''
|GPTQ-for-LLaMa-'''triton'''
|No xformers
|No xformers
Line 84: Line 84:
|-
|-
|text-gen
|text-gen
|anon8231489123-vicuna-13b-GPTQ-4bit-128g
|anonVic13B
|GPTQ-for-LLaMa-'''cuda'''
|GPTQ-for-LLaMa-'''cuda'''
|No xformers
|No xformers
Line 92: Line 92:
|-
|-
|text-gen
|text-gen
|anon8231489123-vicuna-13b-GPTQ-4bit-128g
|anonVic13B
|GPTQ-for-LLaMa-'''cuda'''
|GPTQ-for-LLaMa-'''cuda'''
|yes
|yes

Revision as of 17:00, 14 April 2023

LLama

https://wiki.installgentoo.com/wiki/Home_server#Expanding_Your_Storage

https://rentry.org/llama-tard-v2

https://rentry.org/llamaaids

https://hackmd.io/@reneil1337/alpaca

https://boards.4channel.org/g/catalog#s=lmg%2F

https://find.4chan.org/?q=AI+Dynamic+Storytelling+General

https://find.4chan.org/?q=AI+Chatbot+General

https://find.4chan.org/?q=%2Flmg%2F (local models general)

https://boards.4channel.org/g/thread/92400764#p92400764

https://rentry.org/llamaaids


https://files.catbox.moe/lvefgy.json

https://pytorch.org/hub/nvidia_deeplearningexamples_tacotron2/


python server.py --model llama-7b-4bit --wbits 4

python server.py --model llama-13b-4bit-128g --wbits 4 --groupsize 128

https://github.com/qwopqwop200/GPTQ-for-LLaMa/issues/59 for installing with out of space error

https://github.com/oobabooga/text-generation-webui/wiki/LLaMA-model#4-bit-mode


https://github.com/pybind/pybind11/discussions/4566

https://lmsysvicuna.miraheze.org/wiki/How_to_use_Vicuna#Use_with_llama.cpp%3A

https://huggingface.co/anon8231489123/vicuna-13b-GPTQ-4bit-128g


Here's the uncucked Vicuna model (trained on the dataset that don't have the moralistic bullshit anymore) Too bad it's just the CPU quantized version

Vicuna generating its own prompts


should be worse than Q4_1 (which is QK=32) but there are several PRs in the work that should improve quantization accuracy in general

https://github.com/ggerganov/llama.cpp/pull/729

https://github.com/ggerganov/llama.cpp/pull/835

https://github.com/ggerganov/llama.cpp/pull/896

Benchmarks

Interface Model GPTQ Xformers? HW Load Speed
text-gen anon8231489123-vicuna-13b-GPTQ-4bit-128g GPTQ-for-LLaMa-triton yes 240gb SSD, 16gb,desktop off 10.53 7.97 tokens/sec
text-gen anon8231489123-vicuna-13b-GPTQ-4bit-128g GPTQ-for-LLaMa-triton No xformers 240gb SSD, 16gb,desktop off 10.22s 7.55 tokens/sec
text-gen anon8231489123-vicuna-13b-GPTQ-4bit-128g GPTQ-for-LLaMa-cuda No xformers 240gb SSD, 16gb,desktop off 16.68s 4.03 tokens/sec
text-gen anon8231489123-vicuna-13b-GPTQ-4bit-128g GPTQ-for-LLaMa-cuda yes 240gb SSD, 16gb,desktop off 9.34s 4.01 tokens/sec
text-gen llama-30b-sft-oa-alpaca-epoch-2-4bit-ggml no no 2TB SSD, 64gb ? 0.67 tokens/sec
text-gen llama-30b-sft-oa-alpaca-epoch-2-4bit-ggml no no 2TB SSD, 64gb, --threads 8 maybe 30s? 0.51 tokens/sec
text-gen llama-30b-sft-oa-alpaca-epoch-2-4bit-ggml no no 2TB SSD, 64gb, --threads 7 0.68 tokens/sec
text-gen anon8231489123-vicuna-13b-GPTQ-4bit-128g-ggml no no 2TB SSD, 64gb 1.17 tokens/s