Maths: Difference between revisions

From Hegemon Wiki
Jump to navigation Jump to search
Line 9: Line 9:


* 𝔽ₚ - Set of integers modulo a prime p. Addition and multiplication also defined modulo p.
* 𝔽ₚ - Set of integers modulo a prime p. Addition and multiplication also defined modulo p.
* ℚ(γ) - γ is the root of the polynomial x³-x+-1. 2.2 in princton companion of mathematics.
* ℚ(γ) - γ is the root of the polynomial x³-x-1. See: 22 in princeton companion of mathematics.


==Algebraic Structures==
==Algebraic Structures==

Revision as of 13:13, 17 February 2017

Glossary

Number Systems

  • ℕ - The set of all natural numbers. No zero. No negatives. Subtraction and division aren't always possible. ℕ = {1, 2, 3, ...}.
  • ℤ - The set of all integers. Subtraction is always possible. ℤ = {..., -3, -2, -1, 0, 1, 2, 3, ...}
  • ℚ - The set of all rational numbers (Quotient). Fractions. Division is always possible. ℚ is a field.
  • ℝ - The set of all real numbers. Includes irrational and transcendental numbers. √(2), π, e, φ. ℝ is an extension of ℚ to a larger field.
  • ℝ⁺ - The set of all positive reals.
  • ℂ - The set of all complex numbers. i²=-1. Also a field.
  • 𝔽ₚ - Set of integers modulo a prime p. Addition and multiplication also defined modulo p.
  • ℚ(γ) - γ is the root of the polynomial x³-x-1. See: 22 in princeton companion of mathematics.

Algebraic Structures

  • Set - A collection of elements.
  • Group - A set with a binary operation. The operation must be associative. If the operation is also commutative then it is an Abelian group. [TODO]: Get Axioms.
  • Field - A set with 2 binary operations (+, ×). Both must be commutative and associative. And have an identity elements (+ is 0 and × is 1). Every element must have an inverse (x = -x, x = 1/x). Must follow the distributive law.
  • Vector Space - Like a 2D or 3D plane. Can be built from 'unit vectors'. for example (1,0), (0,1). There was a Youtube on the topic. ℝ², ℝ³, ℝⁿ a vector space of n-dimensions over the field ℝ (ℝ is the scalar type).
  • Scalar - A number used to multiply a vector. Infinite dimensional vector spaces exist such as when vectors are functions.
  • Ring - Similar to a field but multiplication doesn't require an inverse. Multiplication might not be commutative.