AI
See also: AI Art
New Shit
https://www.librechat.ai/ https://github.com/danny-avila/LibreChat - Replace open-webui
geechan - SillyTavern GLM System prompts
https://github.com/github/spec-kit https://www.youtube.com/watch?v=em3vIT9aUsg
https://joeyagreco.medium.com/reverse-engineering-the-hottest-new-game-5362cfe7c452
https://blog.plasticlabs.ai/blog/YouSim%3B-Explore-The-Multiverse-of-Identity?utm_source=chatgpt.com
https://worldsim.nousresearch.com/console
残心 / Zanshin - Navigate through media by speaker
LLM from Scratch Tutorial – Code & Train Qwen 3
simstudioai/sim Install Sim Locally with Ollama: AI Agent Workflow Builder
RamaLama - Ollama alternative
Docling, DOTS OCR, and Ollama OCR
awesome-comfyui http rest
https://github.com/sakalond/StableGen - generate textures for blender
what_upscaler_is_the_best_now/
You can use `-ngl 49` and just pass `--n-cpu-moe 20`. Also add `-fa` and `-ctk q8_0 -ctv q8_0`.
PIP_BREAK_SYSTEM_PACKAGES=1 comfy install
Qwen-3 Coder CLI Forgets Everything. I Gave It a Perfect Memory.
https://modal.com/blog/fast-cheap-batch-transcription
Make your AI Agents 10x Smarter with GraphRAG (n8n)
https://huggingface.co/rednote-hilab/dots.ocr
YOLOE: Next Gen Computer Vision - Zero Training Required!
Cipher - Cipher is an opensource memory layer specifically designed for coding agents.
https://smcleod.net/2024/12/bringing-k/v-context-quantisation-to-ollama/
Local LightRAG: A GraphRAG Alternative but Fully Local with Ollama
Graph RAG Evolved: PathRAG (Relational Reasoning Paths)
The Only Embedding Model You Need for RAG
https://ollama.com/library/smallthinker - Can be used as a draft model for QwQ-32B giving a %70 speed up.
sqrt(params * active) - A rule of thumb to calculate the equivalent number of parameters that a dense model would have.
Direct3D‑S2: Gigascale 3D Generation Made Easy with Spatial Sparse Attention
Make RAG 100x Better with Real-Time Knowledge Graphs
Are there any free working voice cloning AIs?
privategpt - privategpt imho Is the best for rag if you need the source, It not only lists the PDF used for the answer but also the page, and Is quite precise. So for studyb and search in a library Is the best i know
FLUX Model Quantization Challenge
dont_offload_gguf_layers_offload_tensors_200_gen
I Built the Ultimate RAG MCP Server for AI Coding (Better than Context7)
NEW FramePack F1 Model - Much Better Results - Bonus How to Install Sage
https://docs.google.com/document/d/12ATcyjCEKh8T-MPDZ-VMiQ1XMa9FUvvk2QazrsKoiR8/edit?tab=t.0
This AI Model has me excited about the future of Local LLM's | Qwen3-30B-A3B
https://www.reddit.com/r/LocalLLaMA/comments/1ev8n2s/exclude_top_choices_xtc_a_sampler_that_boosts/
https://blog.runpod.io/upscaling-videos-using/
koboldcpp.exe 13B-HyperMantis.ggmlv3.q4_K_M.bin --debug --usecublas --usemlock --contextsize 8192 --blasbatchsize 512 --psutil_set_threads --threads 6 --blasthreads 10 --gpulayers 5 --highpriority --stream --usemlock --unbantokens --smartcontext
If you're running 1.35 and a superHOT model, you should also add --linearrope which should make them perform better.
RP recommened models: "superhot, airoboros, wizard-vicuna, guanaco, chronos are a few commonly discussed models off the top of my head. For me, it's superhot or guanaco (one or the other, not the merge though)"
Programs
UI
jan.ai
open webui
CLI
mcptools - For inspecting mcp servers.
| Client Name | Description | Key Features | Implementation | URL |
|---|---|---|---|---|
| oterm | A text-based terminal client for Ollama with MCP tools, prompts, and sampling. | Supports MCP tools, prompts, sampling; Streamable HTTP & WebSocket transports. | TUI (Terminal UI) | GitHub |
| ollama-mcp-client | Python-based client for integrating local Ollama models with MCP servers. | Seamless MCP integration, Git operations support, tool discovery. | Python CLI | GitHub |
| mcp-client-for-ollama | TUI client for interacting with MCP servers using Ollama, offering interactivity. | Multi-server support, streaming responses, fuzzy autocomplete. | TUI (Terminal UI) | GitHub |
| Mcp-cli | General-purpose CLI for interacting with MCP servers, supporting Ollama. | Supports multiple providers, modular chat, context-aware completions. | Command-line | Source |
| Mcp Client Ollama | Python-based CLI for connecting Ollama to MCP servers, focusing on tool execution. | stdio and SSE transports, JSON configuration, multiple server support. | Python CLI | Source |
GUI
Tasksel
Not sure if this is common knowledge, but some advice to all fellow VRAMlets who are offloading to RAM. Setting the number of threads is not good enough, you can get extra speed by manually setting core affinity.
For context:
I have a 13600K which has 6 P-cores. I had read that you should set --threads to that number, so I would run koboldcpp with --threads 6 and from some testing this was indeed the best option with that argument alone.
BUT, I looked at which cores were actually used and found e-cores also being used sometimes.
So the next step was to set the core affinity to just P-cores. Each P-core has two threads and CPU0-11 was P-cores, CPU12-19 was E-cores. Thus, I ran koboldcpp with one thread from each core:
taskset -c 0,2,4,6,8,10 python kobodcpp.py [args]
My speed running command-r went from ~2.3 T/s to 2.67 T/s Pretty good. But, what if I use them fully, I thought. So I set --threads 12 and taskset -c 0,1,2,3,4,5,6,7,8,9,10,11 And I get a generation with 3.09 T/s That's a whooping 33% increase from my initial. Hope this is helpful, it actually had my basedfacing captcha: pic rel
Benchmarks
https://artificialanalysis.ai/
https://eqbench.com/creative_writing.html
BFCL: From Tool Use to Agentic Evaluation of Large Language Models
MTEB Leaderboard - Embedding models
📢UGI-Leaderboard - Uncensored General Intelligence
Artificial Analysis Long Context Reasoning Benchmark Leaderboard
Vision Benchmarks
https://huggingface.co/spaces/opencompass/open_vlm_leaderboard
https://dubesor.de/visionbench
MCP Servers
https://www.reddit.com/r/RooCode/comments/1ijgk2x/roo_code_mcps_best_mcp_configs/mbej58g/
Prompts
https://cookbook.openai.com/examples/enhance_your_prompts_with_meta_prompting
https://www.prompthub.us/blog/a-complete-guide-to-meta-prompting
https://alidocs.dingtalk.com/i/nodes/EpGBa2Lm8aZxe5myC99MelA2WgN7R35y
https://github.com/elder-plinius/L1B3RT4S
Video
ComfyUI - Wan 2.2 & FFLF with Flux Kontext for Quick Keyframes for Video
🤿 One-Step Video Upscaling: Complete ComfyUI SeedVR2 Guide (Free workflow included) | AInVFX July 11
Upscaling Maximizing VRAM | Free ComfyUI Workflow!
Easy Creation with One Click - AI Videos - Wan cheatsheet.
TLB-VFI: Temporal-Aware Latent Brownian Bridge Diffusion for Video Frame Interpolation
Voice
Step-Audio-2-mini - an 8 billion parameter (8B) speech-to-speech model. It outperforms GPT-4o-Audio
https://www.reddit.com/r/speechtech/
https://github.com/nuvious/coqui-ai-api
Microsoft VibeVoice TTS LOCAL Testing – A Multi-Speaker Podcast TTS!
Dia, Fish Speech
Agentic AI Dungeon
n8n - Web tool for AI agents
chroma - Vector database
pgvector
lmstudio
LLama
Models
Upcoming:
Other:
- Granite 4.0
- LLaDA-MoE-7B-A1B-Instruct
- OLMoE
Misc
"There was a tokenizer caching error, some people said. Redownload the hf_output files from the repo or just change the use_cache line in the config.json to say: "use_cache": true," for the Vicuna13B-free https://github.com/stochasticai/xturing/tree/main/examples/int4_finetuning
https://wiki.installgentoo.com/wiki/Home_server#Expanding_Your_Storage
https://rentry.org/llama-tard-v2
https://hackmd.io/@reneil1337/alpaca
https://find.4chan.org/?q=AI+Dynamic+Storytelling+General
https://find.4chan.org/?q=AI+Chatbot+General
https://find.4chan.org/?q=%2Flmg%2F (local models general)
https://boards.4channel.org/g/thread/92400764#p92400764
https://files.catbox.moe/lvefgy.json
https://pytorch.org/hub/nvidia_deeplearningexamples_tacotron2/
python server.py --model llama-7b-4bit --wbits 4python server.py --model llama-13b-4bit-128g --wbits 4 --groupsize 128
https://github.com/qwopqwop200/GPTQ-for-LLaMa/issues/59 for installing with out of space error
https://github.com/oobabooga/text-generation-webui/wiki/LLaMA-model#4-bit-mode
https://github.com/pybind/pybind11/discussions/4566
https://lmsysvicuna.miraheze.org/wiki/How_to_use_Vicuna#Use_with_llama.cpp%3A
https://huggingface.co/anon8231489123/vicuna-13b-GPTQ-4bit-128g
Vicuna generating its own prompts
https://huggingface.co/TheBloke/vicuna-13B-1.1-GPTQ-4bit-128g - python3 llama.py vicuna-AlekseyKorshuk-7B c4 --wbits 4 --true-sequential --act-order --groupsize 128 --save_safetensors vicuna-AlekseyKorshuk-7B-GPTQ-4bit-128g.safetensors
≈65% speedup of the AVX-512 implementation of ggml_vec_dot_q4_0() #933
"Speaking of which, for any 30b anons struggling with context size, I figured something out. If you use the Triton branch on WSL, go into GPTQ_loader.py and comment out make_quant_attn like so" from here
GGML Quantization
Papers
Principle-Driven Self-Alignment of Language Models from Scratch with Minimal Human Supervision
Local Benchmarks
TODO: Try different cublas batch sizes
Main
Older
| Interface | Model | GPTQ | Xformers? | HW | Load | Speed | |
|---|---|---|---|---|---|---|---|
| text-gen | anon8231489123-vicuna-13b-GPTQ-4bit-128g | GPTQ-for-LLaMa-triton | yes | 240gb SSD, 16gb,desktop off | 10.53 | 7.97 tokens/s | |
| text-gen | anon8231489123-vicuna-13b-GPTQ-4bit-128g | GPTQ-for-LLaMa-triton | No xformers | 240gb SSD, 16gb,desktop off | 10.22s | 7.55 tokens/s | |
| text-gen | anon8231489123-vicuna-13b-GPTQ-4bit-128g | GPTQ-for-LLaMa-cuda | No xformers | 240gb SSD, 16gb,desktop off | 16.68s | 4.03 tokens/s | |
| text-gen | anon8231489123-vicuna-13b-GPTQ-4bit-128g | GPTQ-for-LLaMa-cuda | yes | 240gb SSD, 16gb,desktop off | 9.34s | 4.01 tokens/s | |
| text-gen | llama-30b-sft-oa-alpaca-epoch-2-4bit-ggml | no | no | 2TB SSD, 64gb | ? | 0.67 tokens/s | |
| text-gen | llama-30b-sft-oa-alpaca-epoch-2-4bit-ggml | no | no | 2TB SSD, 64gb, --threads 8 | maybe 30s? | 0.51 tokens/s | |
| text-gen | llama-30b-sft-oa-alpaca-epoch-2-4bit-ggml | no | no | 2TB SSD, 64gb, --threads 7 | 0.68 tokens/s | ||
| text-gen | llama-30b-sft-oa-alpaca-epoch-2-4bit-ggml | no | no | 2TB SSD, 64gb, --threads 6 | 0.61 tokens/s | ||
| text-gen | anon8231489123-vicuna-13b-GPTQ-4bit-128g-ggml | no | no | 2TB SSD, 64gb | 1.17 tokens/s | ||
| text-gen | anon8231489123-vicuna-13b-GPTQ-4bit-128g | GPTQ-for-LLaMa-triton | yes | 2TB SSD, 64gb, --pre_layer 25 | 45.69 | 0.25 tokens/s | |
| text-gen | anon8231489123-vicuna-13b-GPTQ-4bit-128g | GPTQ-for-LLaMa-triton | yes | 2TB SSD, 64gb | 36.47 | 9.63 tokens/s | |
| llama.cpp | llama-30b-sft-oa-alpaca-epoch-2-4bit-ggml | 2TB SSD, 64gb | 10317.90 ms | 1096.21 ms per token | |||
| llama.cpp-modern-avx512 | llama-30b-sft-oa-alpaca-epoch-2-4bit-ggml | 2TB SSD, 64gb | 9288.69 ms | 1049.03 ms per token | |||
| llama.cpp-avx512-pr833 | llama-30b-sft-oa-alpaca-epoch-2-4bit-ggml | 2TB SSD, 64gb | 13864.06 ms | 0.89 tokens/s, 820.68 ms per token | |||
| text-gen | TheBloke-gpt4-alpaca-lora-30B-4bit-GGML/ggml-model-q4_0 | 2TB SSD, 64gb | 0.78 tokens/s | ||||
| text-gen+avx512-pr833 | TheBloke-gpt4-alpaca-lora-30B-4bit-GGML/ggml-model-q4_0 | 2TB SSD, 64gb | 1.04 tokens/s | ||||
| 2023-04-24 | text-gen | anon8231489123-vicuna-13b-GPTQ-4bit-128g | GPTQ-for-LLaMa-triton | yes | 2TB SSD, 64gb, also running llama.cpp with another model | 16.36 | 5.07 tokens/s |
| 2023-04-26 | koboldcpp | gozfarb-llama-30b-supercot-ggml/ggml-model-q4_0.bin | clblast | n/a | 2TB SSD, 64gb, --threads 8 | 1073ms/T | |
| 2023-04-29 | koboldcpp | Alpacino-30b-q4_0.bin | clblast | n/a | 2TB SSD, 64gb | 700ms/T | |
| 2023-07-13 | koboldcpp | llama-33b-supercot-ggml-q5_1 (complains about old format) | cublas | n/a | 2TB SSD, 64gb, --nommap --smartcontext --usecublas --gpulayers 18 | 643ms/T 1.4T/s | |
| 2023-07-13 | koboldcpp | llama-33b-supercot-ggml-q5_1 (complains about old format) | clblast | n/a | 2TB SSD, 64gb, --nommap --smartcontext --useclblast 0 0 --gpulayers 18 | 685ms/T 1.2T/s | |
| 2023-07-13 | koboldcpp | airoboros-33b-gpt4-1.2.ggmlv3.q4_K_M.bin | cublas | n/a | 2TB SSD, 64gb, --nommap --smartcontext --usecublas --gpulayers 18 (probably space for more) | 652ms/T 1.5T/s | |
| 2023-07-13 | koboldcpp | airoboros-33b-gpt4-1.2.ggmlv3.q4_K_M.bin | cublas | n/a | 2TB SSD, 64gb, --nommap --smartcontext --usecublas --gpulayers 26 (I note 3 threads are set by default) | 593ms/T 1.6T/s | |
| 2023-07-13 | koboldcpp | airoboros-33b-gpt4-1.2.ggmlv3.q4_K_M.bin | cublas | n/a | 2TB SSD, 64gb, --nommap --smartcontext --usecublas --gpulayers 26 --psutil _set_threads (4 threads) | 514ms/T 1.8T/s | |
| 2023-07-13 | koboldcpp | airoboros-33b-gpt4-1.2.ggmlv3.q4_K_M.bin | cublas | n/a | 2TB SSD, 64gb, --smartcontext --usecublas --gpulayers 26 --psutil _set_threads (removed nommap) | 508ms/T 1.9T/s | |
| 2023-07-13 | koboldcpp | airoboros-33b-gpt4-1.2.ggmlv3.q4_K_M.bin | cublas | n/a | 2TB SSD, 64gb, --smartcontext --usecublas --gpulayers 26 --threads 5 | 454ms/T 2.1T/s | |
| 2023-07-13 | koboldcpp | airoboros-33b-gpt4-1.2.ggmlv3.q4_K_M.bin | cublas | n/a | 2TB SSD, 64gb, --smartcontext --usecublas --gpulayers 26 --threads 6 | 422ms/T 2.2T/s | |
| 2023-07-13 | koboldcpp | airoboros-33b-gpt4-1.2.ggmlv3.q4_K_M.bin | cublas | n/a | 2TB SSD, 64gb, --smartcontext --usecublas --gpulayers 26 --threads 7 | 509ms/T 1.8T/s | |
| 2023-07-13 | koboldcpp | airoboros-33b-gpt4-1.2.ggmlv3.q4_K_M.bin | cublas | n/a | 2TB SSD, 64gb, --smartcontext --usecublas --gpulayers 26 --threads 8 | 494ms/T 1.7T/s | |
| 2023-07-13 | koboldcpp | airoboros-33b-gpt4-1.2.ggmlv3.q4_K_M.bin | cublas | n/a | 2TB SSD, 64gb, --smartcontext --usecublas --gpulayers 26 --threads 6 --linearrope (no difference, needs supercot?) | 425ms/T 2.2T/s | |
| 2023-07-13 | koboldcpp | airoboros-33b-gpt4-1.4.ggmlv3.q4_K_M.bin | cublas | n/a | 2TB SSD, 64gb, --smartcontext --usecublas --gpulayers 26 --threads 6 | 400ms/T 2.3T/s | |
| 2023-07-13 | koboldcpp | airoboros-65b-gpt4-1.4.ggmlv3.q4_K_M.bin | cublas | n/a | 2TB SSD, 64gb, --nommap --smartcontext --usecublas --gpulayers 13 --threads 6 | 1366ms/T 0.7T/s | |
| 2023-07-14 | koboldcpp | airoboros-65b-gpt4-1.4.ggmlv3.q2_K.bin | cublas | n/a | 2TB SSD, 64gb, --nommap --smartcontext --usecublas --gpulayers 13 --threads 6 | 765ms/T - 1.2T/s | |
| 2023-09-06 | koboldcpp | guanaco-33B.ggmlv3.q4_K_M.bin | cublas | n/a | 2TB SSD, 64gb, --stream --smartcontext --usecublas --gpulayers 29 --threads 6 | 562ms/T - 1.3T/s | |
| 2023-09-06 | koboldcpp | guanaco-33B.ggmlv3.q4_K_M.bin | cublas | n/a | 2TB SSD, 64gb, --nommap --stream --smartcontext --usecublas --gpulayers 29 --threads 6 | 567ms/T), Total:70.7s (1.4T/s | |
| 2023-09-06 | koboldcpp | guanaco-33B.ggmlv3.q4_K_M.bin | cublas | n/a | 2TB SSD, 64gb, --nommap --stream --smartcontext --usecublas --gpulayers 25 --threads 6 | 563ms/T), Total:70.2s (1.4T/s | |
| 2023-12-03 | koboldcpp | guanaco-33B.q4_K_M.gguf | cublas | n/a | 2TB SSD, 64gb, --nommap --smartcontext --usecublas --threads 6 --gpulayers 27 | 330.7ms/T), Total:40.79s 2.94T/s | |
| 2023-12-07 | koboldcpp | guanaco-33B.q4_K_M.gguf | cublas | n/a | 7950x3d, 2TB SSD, 64gb, --nommap --smartcontext --usecublas --threads 6 --gpulayers 27 | 202.1ms/T, 4.78T/s | |
| 2023-12-07 | koboldcpp | guanaco-33B.q4_K_M.gguf | cublas | n/a | 7950x3d, 2TB SSD, 64gb, --nommap --smartcontext --usecublas --threads 32 --gpulayers 27 | 360.8ms/T, 2.68T/s | |
| 2023-12-07 | koboldcpp | guanaco-33B.q4_K_M.gguf | cublas | n/a | 7950x3d, 2TB SSD, 64gb, --nommap --smartcontext --usecublas --threads 16 --gpulayers 27 | 202.6ms/T, 4.82T/s | |
| 2023-12-07 | koboldcpp | guanaco-33B.q4_K_M.gguf | cublas | n/a | 7950x3d, 2TB SSD, 64gb, --nommap --smartcontext --usecublas --threads 15 --gpulayers 27 | 195.0ms/T, 5.03T/s | |
| 2023-12-16 | koboldcpp | mistral-7b-instruct-v0.2.Q8_0.gguf | cublas | n/a | 7950x3d, 2TB SSD, 64gb, --nommap --smartcontext --usecublas --threads 15 --gpulayers 33 | 22.9ms/T, 42.90T/s | |
| 2023-12-17 | koboldcpp | mixtral-8x7b-moe-rp-story.Q8_0.gguf | cublas | n/a | 7950x3d, 2TB SSD, 64gb, --nommap --smartcontext --usecublas --threads 15 --gpulayers 6 | 214.9ms/T, 4.47T/s | |
| 2024-02-04 | SillyTavern | miqu 70b | gpu layers 9 | 1.4T/s |
Newer
| Interface | Model | Notes | HW | Speed | ||
|---|---|---|---|---|---|---|
| 2025-08-01 | ollama | qwen3-coder:30b-a3b-q4_K_M | 17.01T/s | |||
| 2025-08-01 | ollama | hf.co/unsloth/Qwen3-Coder-30B-A3B-Instruct-GGUF:Q4_K_M | 16.84T/s | |||
| 2025-08-01 | ollama | hf.co/unsloth/Qwen3-30B-A3B-Thinking-2507-GGUF:Q4_K_M | 14.39T/s | |||
| 2025-08-01 | ollama | qwen3:30b-a3b-thinking-2507-q4_K_M | 13.95T/s | |||
| 2025-08-02 | ollama | Qwen3:30b-a3b-thinking-2507-q8_0 | 10.93T/s | |||
| 2025-08-13 | llama.cpp-cuda | unsloth_Qwen3-Coder-30B-A3B-Instruct-GGUF_Qwen3-Coder-30B-A3B-Instruct-UD-Q4_K_XL.gguf | No gpu, --ctx-size 32684 | 20.62 T/s | ||
| 2025-08-13 | llama.cpp-cuda | unsloth_Qwen3-Coder-30B-A3B-Instruct-GGUF_Qwen3-Coder-30B-A3B-Instruct-UD-Q4_K_XL.gguf | 9287MiB / 11264MiB | -ngl 22 --ctx-size 12684 | 31.54 T/s | |
| 2025-08-13 | llama.cpp-cuda | unsloth_Qwen3-Coder-30B-A3B-Instruct-GGUF_Qwen3-Coder-30B-A3B-Instruct-UD-Q6_K_XL.gguf | -ngl 15 --ctx-size 12684 | 21.51 T/s | ||
| 2025-08-14 | llama.cpp-cuda | unsloth_gemma-3-27b-it-qat-GGUF_gemma-3-27b-it-qat-Q4_K_M.gguf | default | like 3? idk | ||
| 2025-08-14 | llama.cpp-cuda | unsloth_gemma-3-27b-it-qat-GGUF_gemma-3-27b-it-qat-Q4_K_M.gguf | -fa --ctx-size 12684 | 2.76 T/s | ||
| 2025-08-14 | llama.cpp-cuda | unsloth_gemma-3-27b-it-qat-GGUF_gemma-3-27b-it-qat-Q4_K_M.gguf | -fa -ngl 25 --ctx-size 12684 | 4.87 Ts | ||
| 2025-08-14 | llama.cpp-cuda | unsloth_gemma-3-27b-it-qat-GGUF_gemma-3-27b-it-qat-Q4_K_M.gguf | -ngl 22 --ctx-size 12684 | 4.10 T/s | ||
| 2025-08-14 | llama.cpp-cuda | unsloth_gemma-3-27b-it-qat-GGUF_gemma-3-27b-it-qat-Q4_K_M.gguf | -ngl 22 --ctx-size 12684 -fa | 4.43 T/s | ||
| 2025-08-14 | llama.cpp-cuda | unsloth/gemma-3n-E4B-it-GGUF:UD-Q4_K_XL | -fa -ngl 99 --ctx-size 12684 | 23.14 T/s | ||
| 2025-08-14 | llama.cpp-cuda | unsloth/Mistral-Small-3.2-24B-Instruct-2506-GGUF:UD-Q4_K_XL | --ctx-size 12684
--flash-attn --jinja --temp 0.15 --top-k -1 --top-p 1.00 -ngl 20 |
7.48 T/s | ||
| 2025-08-14 | llama.cpp-cuda | unsloth/Qwen3-4B-Instruct-2507-GGUF:UD-Q8_K_XL | --flash-attn
-ngl 99 --jinja --ctx-size 12684 --temp 0.6 --top-k 20 --top-p 0.95 --min-p 0 --presence-penalty 1.5 -c 22684 -n 32768 --no-context-shift |
48.69 T/s | ||
| 2025-08-14 | ollama | hf.co/bartowski/L3.3-MS-Nevoria-70b-GGUF:Q4_K_M | Defaults | 1.74 tokens/s | ||
| 2025-08-14 | llama.cpp-cuda | hf.co/bartowski/L3.3-MS-Nevoria-70b-GGUF:Q4_K_M | --flash-attn
-ngl 15 --ctx-size 6000 |
1.82 T/s | ||
| 2025-08-14 | llama.cpp-cuda | hf.co/bartowski/L3.3-MS-Nevoria-70b-GGUF:Q4_K_M | --hf-repo-draft unsloth/Llama-3.2-1B-Instruct-GGUF:Q4_K_M
--flash-attn -ngl 13 --ctx-size 6000 --gpu-layers-draft 99 |
2.98 T/s | ||
| 2025-08-14 | llama.cpp-cuda | unsloth_gemma-3-27b-it-qat-GGUF_gemma-3-27b-it-qat-Q4_K_M.gguf | +270m draft model | 7.19 T/s | ||
| 2025-08-16 | llama.cpp-cuda | qwen3-coder-30b:Q4_K_XL-GPU | 8879MiB / 11264MiB | --flash-attn
-ctk q4_0 -ctv q4_0 --jinja -ngl 22 --ctx-size 12684 |
33.77 T/s | |
| 2025-08-16 | llama.cpp-cuda | qwen3-coder-30b:Q4_K_XL-GPU | 8907MiB / 11264MiB | --flash-attn
-ctk q8_0 -ctv q8_0 --jinja -ngl 22 --ctx-size 12684 |
35.71 T/s | |
| 2025-08-16 | llama.cpp-cuda | qwen3-coder-30b:Q4_K_XL-GPU | 10400MiB / 11264MiB | --flash-attn
-ctk q4_0 -ctv q4_0 --jinja -ngl 26 --ctx-size 12684 |
37.55 T/s | |
| 2025-08-16 | llama.cpp-cuda | qwen3-coder-30b:Q4_K_XL-GPU | 10371MiB / 11264MiB | --flash-attn
-ctk q8_0 -ctv q8_0 --jinja -ngl 26 --ctx-size 12684 |
37.08 T/s | |
| 2025-08-21 | llama.cpp-cuda | ggml-org/gpt-oss-20b-GGUF:mxfp4 | 7907MiB / 11264MiB | --ctx-size 32768 --jinja -ub 2048 -b 2048 -ngl 99 -fa --n-cpu-moe 16 | 38.15 T/s | |
| 2025-08-23 | llama.cpp-cuda | qwen3-coder-30b:Q6_K_XL-GPU | 10511MiB / 11264MiB | --flash-attn
-ctk q8_0 -ctv q8_0 --n-cpu-moe 33 -ngl 99 --ctx-size 12684 |
32.5 t/s | |
| 2025-08-25 | llama.cpp-cuda | unsloth/gemma-3-12b-it-qat-GGUF:UD-Q4_K_XL | 6030MiB / 11264MiB | --flash-attn-ngl 22 --ctx-size 12684 | 12.94 T/s | |
| 2025-08-25 | llama.cpp-cuda | unsloth/gemma-3-12b-it-qat-GGUF:UD-Q4_K_XL | 10174MiB / 11264MiB | --flash-attn-ngl 99 --ctx-size 12684 | 48.3 t/s | |
| 2025-08-25 | llama.cpp-cuda | unsloth/gemma-3-12b-it-qat-GGUF:UD-Q4_K_XL | 10674MiB / 11264MiB | --flash-attn-ngl 99 --ctx-size 12684 -ctk q8_0 -ctv q8_0 | 37.45 T/s | |
| 2025-08-25 | llama.cpp-cuda | unsloth/gemma-3-12b-it-qat-GGUF:UD-Q4_K_XL | 10728MiB / 11264MiB | --flash-attn-ngl 99 --ctx-size 21845 | 49.20 T/s | |
| 2025-08-25 | llama.cpp-cuda | QuantStack/InternVL3_5-30B-A3B-gguf:IQ4_XS 👁 | 9220MiB / 11264MiB | ${KV_CACHE}
--flash-attn --n-cpu-moe 30 -ngl 99 --ctx-size 12684 |
47.1 t/s | |
| 2025-08-28 | llama.cpp-cuda | mradermacher_Dolphin-Mistral-24B-Venice-Edition-i1-GGUF_Dolphin-Mistral-24B-Venice-Edition.i1-Q4_K_M.gguf | 9550MiB / 11264MiB | --ctx-size 8192
--flash-attn --jinja --temp 0.15 --top-p 0.95 --top-k 20 --min-p 0 -ngl 20 |
7.9 t/s | |
| 2025-08-28 | llama.cpp-cuda | mradermacher_Dolphin-Mistral-24B-Venice-Edition-i1-GGUF_Dolphin-Mistral-24B-Venice-Edition.i1-Q4_K_M.gguf | 9107MiB / 11264MiB | ${KV_CACHE}
--ctx-size 8192 --flash-attn --jinja --temp 0.15 --top-p 0.95 --top-k 20 --min-p 0 -ngl 20 |
7.8 t/s | |
| 2025-08-28 | llama.cpp-cuda | mradermacher_Dolphin-Mistral-24B-Venice-Edition-i1-GGUF_Dolphin-Mistral-24B-Venice-Edition.i1-Q4_K_M.gguf | 9766MiB / 11264MiB | ${KV_CACHE}
--ctx-size 8192 --flash-attn --jinja --temp 0.15 --top-p 0.95 --top-k 20 --min-p 0 -ngl 22 |
8.3 t/s | |
| 2025-08-28 | llama.cpp-cuda | mradermacher_Dolphin-Mistral-24B-Venice-Edition-i1-GGUF_Dolphin-Mistral-24B-Venice-Edition.i1-Q4_K_M.gguf | 10429MiB / 11264MiB | ${KV_CACHE}
--ctx-size 8192 --flash-attn --jinja --temp 0.15 --top-p 0.95 --top-k 20 --min-p 0 -ngl 24 |
8.9 t/s | |
| 2025-08-28 | llama.cpp-cuda | mradermacher_Dolphin-Mistral-24B-Venice-Edition-i1-GGUF_Dolphin-Mistral-24B-Venice-Edition.i1-Q4_K_M.gguf | 10542MiB / 11264MiB | --hf-repo-draft bartowski/alamios_Mistral-Small-3.1-DRAFT-0.5B-GGUF:Q4_K_M
--jinja --temp 0.15 --top-p 0.95 --top-k 20 --min-p 0 --ctx-size 8192 ${KV_CACHE} --flash-attn -ngl 22 --gpu-layers-draft 99 |
9.7 t/s | |
| 2025-08-29 | llama.cpp-cuda | unsloth/GLM-4.5-Air-UD-Q2_K_XL.gguf | 8864MiB | 10253MiB / 11264MiB | ${KV_CACHE}
--flash-attn --n-cpu-moe 42 -ngl 99 --ctx-size 8192 |
17.1 t/s |
| 2025-08-30 | llama.cpp-cuda | unsloth/gpt-oss-20b:f16 | 8293M | 7876MiB / 11264MiB | --ctx-size 32768
-ub 2048 -b 2048 -ngl 99 --n-cpu-moe 16 ${KV_CACHE} |
39.4 t/s |
| 2025-08-30 | llama.cpp-cuda | unsloth/gpt-oss-20b:f16 | 13.6G | 10320MiB / 11264MiB | --ctx-size 32768
-ub 2048 -b 2048 -ngl 99 --n-cpu-moe 12 ${KV_CACHE} |
42.8 t/s |
| 2025-08-30 | llama.cpp-cuda | unsloth/gpt-oss-120b:f16 | 33.6G | 9411MiB / 11264MiB | --ctx-size 32768
-ub 2048 -b 2048 ${KV_CACHE} |
6.0 t/s |
| 2025-08-30 | llama.cpp-cuda | unsloth/Seed-OSS-36B-Instruct-UD-Q4_K_XL | 14.5G | 10327MiB / 11264MiB | ${KV_CACHE}
--flash-attn --jinja --n-cpu-moe 40 -ngl 24 --ctx-size 12684 |
4.2t/s |
| 2025-09-01 | llama.cpp-cuda | unsloth/gpt-oss-120b:f16 | 44.4G | 9541MiB / 11264MiB | ${UNSLOTH_GPT_OSS_PARAMS} (k_top 100 not 0)
--jinja --ctx-size 12768 -ub 2048 -b 2048 -ngl 99 --n-cpu-moe 34 --flash-attn ${KV_CACHE_Q4} |
11.7 t/s |
| 2025-09-01 | llama.cpp-cuda | unsloth/gpt-oss-120b:f16 | 45.9G | 9576MiB / 11264MiB | ${UNSLOTH_GPT_OSS_PARAMS} (k_top 100 not 0)
--jinja --ctx-size 22768 -ub 2048 -b 2048 -ngl 99 --n-cpu-moe 34 --flash-attn ${KV_CACHE_Q4} |
12.9 t/s |
| 2025-09-05 | llama.cpp-cuda | Hermes-4-14B-GGUF:Q4_K_M | 853.63 MiB | 10625MiB / 11264MiB | ${KV_CACHE}
--flash-attn on --jinja -ngl 99 --ctx-size 12684 |
42.7 t/s |
| 2025-09-10 | llama.cpp-cuda | gabriellarson/ERNIE-4.5-21B-A3B-Thinking-GGUF:Q4_K_M | 2742MiB / 11264MiB | ${KV_CACHE}
--flash-attn on --n-cpu-moe 35 -ngl 99 --jinja --ctx-size 12684 |
31.1 t/s | |
| 2025-09-10 | llama.cpp-cuda | gabriellarson/ERNIE-4.5-21B-A3B-Thinking-GGUF:Q4_K_M | 10759MiB / 11264MiB | ${KV_CACHE}
--flash-attn on --n-cpu-moe 10 -ngl 99 --jinja --ctx-size 12684 |
49.0 t/s | |
| 2025-09-10 | llama.cpp-cuda | gabriellarson/ERNIE-4.5-21B-A3B-Thinking-GGUF:Q8_0 | 15.7G | 9408MiB / 11264MiB | ${KV_CACHE}
--flash-attn on --n-cpu-moe 20 -ngl 99 --jinja --ctx-size 12684 |
28.5 t/s |
| 2025-09-18 | llama.cpp-cuda | unsloth_Magistral-Small-2509-GGUF_Magistral-Small-2509-UD-Q4_K_XL.gguf 👁 | 8900M | 10237MiB / 11264MiB | --special
--ctx-size 12684 --flash-attn on -ngl 20 --jinja --temp 0.7 --top-k -1 --top-p 0.95 |
7.9 t/s |
| 2025-09-18 | llama.cpp-cuda | glm-4.5-air:Q3_K_XL | 42.6G | 8881MiB / 11264MiB | ${KV_CACHE}
--flash-attn on --jinja --n-cpu-moe 44 -ngl 99 --ctx-size 8192 |
7.6 t/s |
| 2025-09-26 | llama.cpp-cuda | qwen3-coder-30b:Q4_K_XL-GPU | 10.5G | 8632MiB | ${KV_CACHE}
--flash-attn on --jinja --n-cpu-moe 30 -ngl 99 --ctx-size 25000 |
49.33t/s |
| 2025-10-03 | llama.cpp-cuda | granite-4.0-h-small:Q4_K_XL | 11.4G | 9324MiB | ${KV_CACHE}
--flash-attn on --n-cpu-moe 25 -ngl 99 --ctx-size 12684 |
25.23t/s |
| 2025-10-03 | llama.cpp-cuda | granite-4.0-h-tiny:Q4_K_XL | 0 | 5487MiB | ${KV_CACHE}
--flash-attn on --n-cpu-moe 0 -ngl 99 --ctx-size 16384 |
112.28 |
| 2025-10-03 | llama.cpp-cuda | granite-4.0-h-micro:Q4_K_XL | 0 | 3431MiB | ${KV_CACHE}
--flash-attn on --n-cpu-moe 0 -ngl 99 --ctx-size 16384 |
108.58 |
deepseek-r1-distill-qwen-32b - 4.20 tok/sec
Hextor
https://artificialanalysis.ai/models/comparisons/qwen3-30b-a3b-2507-vs-gemma-3-27b
https://artificialanalysis.ai/models/comparisons/qwen3-30b-a3b-2507-vs-deepseek-r1-0120
Smallthinker comparison, compares gemma3, older qwen3
| Date | Engine | Model | Thinking | Total Time | Eval Tokens | Prompt (tokens/s) | Eval (token/s) | |
|---|---|---|---|---|---|---|---|---|
| 2025-08-01 | ollama | gemma3:1B | ❌ | 20s | 573 | 91.61 | 28.04 | |
| 2025-08-01 | ollama | mashriram/gemma3nTools:e4b | ❌ | 1m12s | 537 | 22.12 | 7.95 | |
| 2025-08-01 | ollama | gemma3:12b-it-qat | ❌ | 4m2s | 716 | 9.79 | 2.99 | |
| 2025-08-01 | ollama | gemma3:27b-it-qat | ❌ | 9m11s | 778 | 4.16 | 1.43 | |
| 2025-08-01 | ollama | deepseek-r1:8b | ✅ | 6m9s | 1807 | 13.53 | 4.90 | |
| 2025-08-01 | ollama | qwen3:30b-a3b-instruct-2507-q4_K_M | ❌ | 2m10s | 1454 | 26.60 | 11.17 | |
| 2025-08-01 | ollama | hf.co/unsloth/Qwen3-30B-A3B-Instruct-2507-GGUF:Q4_K_M | ❌ | 56s | 623 | 21.37 | 11.26 | |
| 2025-08-01 | ollama | hf.co/unsloth/Qwen3-30B-A3B-Thinking-2507-GGUF:Q4_K_M | ✅ | 1m50s | 1203 | 25.88 | 10.87 | |
| 2025-08-01 | ollama | hf.co/unsloth/Qwen3-Coder-30B-A3B-Instruct-GGUF:Q4_K_M | ❌ | 36s | 504 | 136.43 | 11.33 | |
| 2025-08-01 | ollama | qwq:latest | ✅ | 14m17s | 1111 | 3.21 | 1.30 | |
| 2025-08-01 | ollama | hf.co/unsloth/DeepSeek-R1-0528-Qwen3-8B-GGUF:Q4_K_XL | ✅ | 6m9s | 1860 | 12.93 | 5.05 | |
| 2025-08-13 | llama.cpp | unsloth_Qwen3-Coder-30B-A3B-Instruct-GGUF_Qwen3-Coder-30B-A3B-Instruct-UD-Q4_K_XL.gguf | ❌ | 30903.17 ms | 357 | 30.27 | 11.70 | |
| 2025-08-15 | llama.cpp | unsloth_Qwen3-30B-A3B-Instruct-2507-GGUF_Qwen3-30B-A3B-Instruct-2507-Q4_K_M.gguf | ❌ | 14703.99 ms | 177 | 30.83 | 12.04 | |
| 2025-08-15 | llama.cpp | unsloth_Qwen3-4B-Instruct-2507-GGUF_Qwen3-4B-Instruct-2507-UD-Q8_K_XL.gguf | ❌ | 28738.32 ms | 147 | 28.28 | 5.22 | |
| 2025-08-15 | llama.cpp | unsloth_Qwen3-4B-Instruct-2507-GGUF_Qwen3-4B-Instruct-2507-UD-Q4_K_XL.gguf | ❌ | 8580.48 ms | 79 | 31.71 | 9.82 | |
| 2025-08-16 | llama.cpp | unsloth_Qwen3-Coder-30B-A3B-Instruct-GGUF_Qwen3-Coder-30B-A3B-Instruct-UD-Q4_K_XL.gguf | ❌ | kv_cache q8 | 12.47, 11.73 | |||
| 2025-08-16 | llama.cpp | unsloth_Qwen3-Coder-30B-A3B-Instruct-GGUF_Qwen3-Coder-30B-A3B-Instruct-UD-Q4_K_XL.gguf | ❌ | kv_cache q4 | 11.89, 11.94 | |||
| 2025-08-30 | llama.cpp | unsloth/gpt-oss-20b-F16.gguf | ❌ | no fa? | 11.7 t/s |
Prompts
File sorting
You are an AI, your purpose the sorting of files/folders recently downloaded from BitTorrent.
RULE: All interactions with the system must be one of the following "SYSTEM COMMANDS", you may also think by putting thoughts between 'think' html block tags.
* ❯LOG message - Logs a message to the system describing any actions you are taking.
* ❯ABORT optional reason - Aborts the operation. Use this if there is an error.
* ❯MOVE [SOURCE] [DESTINATION] - Moves the file. [SOURCE] is the fullpath of the filename and [DESTINATION] is a folder.
* ❯MKDIR [PATH] - Makes a directory. For example '❯MKDIR "/mnt/storage12/Videos/Series/Example Show"'.
* ❯REQUEST_HELP message - Requests help from a human operator.
You may also think by putting it between html block tags with the name 'think'.
Put quotes around all file/folder names to ensure spaces are handled correctly.
All "SYSTEM COMMANDS" are prefixed with a ❯ character. Each system command should be on a line on it's own.
All "SYSTEM COMMANDS" (other than "❯LOG") should be prefixed with a "LOG" command explaining what action is being taken and why."
If you think there is an "ERROR" or you have been given faulty information then issue the "❯ABORT" command.
If a task is to complex, your confused or you require more information then issue a "❯REQUEST_HELP" command to request help or information from a "HUMAN OPERATOR".
Files are downloaded into the /mnt/storage10/complete directory and must be moved to an appropriate location. There are multiple harddrives on the server, they are mounted as /mnt/storage0, /mt/storage1, /mnt/storage2, ending with /mnt/storage12. Your goal is to move the file to an appropriate location.
Each drive has directories for "/mnt/storage#/Videos/Series", "/mnt/storage#/Videos/Anime", "/mnt/storage#/Videos/Movies", you must move the file/folder to one of these locations. A file catagorized as a "TV Series" will go in the folder name "Series" NOT "TV Series".
You will be given the filename of a download, file size, information about the amount of space on each drive and possible relevant folders.
You should start by classifying the file into a 'Movie', 'TV Series' , 'Anime' or 'Other'. If a movies is also an Anime should be classified as 'Anime'. Both 'Anime" and "TV Series" can have a season so that information by itself isn't enough to determine it's a 'TV Series'. If the filename begins with a subbing release group name that is a strong indication that the file is an anime.
If the category of a file is "Other", do not attempt to move it. Instead output "ABORT" all in capital letters and stop all other output.
Extract the season number if there is season information in the filename.
When ready to move a file issue the command "❯MOVE [SOURCE] [DESTINATION]"
Movies should just be moved to a drive with the least free space into the "/mnt/storage#Videos/Movies/" directory. Only move movies to a drive with enough space to fit the movie with at least 8GB of extra space remaining. Do not rename the file/folder, instead leave the filename intact.
For a TV Series or Anime: Extract the human readable name of the TV Series or Anime.
For a TV Series or Anime: Check to see if there are any folder given to you with a human readable name on a drive with enough space.
For a TV Series or Anime: The file/folder can be either an individual episode or a folder with multiple episodes.
For a TV Series or Anime: If there is a season number then put it into a subfolder with that season number, for example for "foundation.s03e03.1080p.web.h264-successfulcrab[EZTVx.to].mkv" might be put in "/mnt/storage#/Videos/Series/Foundation/Season 03/".
For Anime: If the filename is a folder and there is no season information, assume it is a complete series and just put it into the /Anime/ on the chosen drive.
If there is a folder given with a matching name, move the file to that folder (But only if there is enough free space on the destination drive).
If there are multiple appropriate folders given then choose the one on a drive with the least amount of free space.
For a TV Series/Anime, if there is no given folder with the correct name, or all the appropriate folders are on a drive without enough space then create a folder on the drive with the most free space.
In order to avoid a situation with a "Movie" and a "TV Series" having the same name, a if a folder exists does it have the correct category in it's path.
Does the drive have enough space to move the episode to? If not try another folder.
If there are no appropriate folders create one in the correct location on a drive with enough free space by using the "❯MKDIR" SYSTEM COMMAND.
Here is the disk free space information:
╭────────────────────────╮
│ 13 local devices │
├────────────────┬───────┤
│ MOUNTED ON │ AVAIL │
├────────────────┼───────┤
│ /mnt/storage0 │ 8.9G │
│ /mnt/storage1 │ 37.3G │
│ /mnt/storage10 │ 63.7G │
│ /mnt/storage11 │ 10.6G │
│ /mnt/storage12 │ 1.8T │
│ /mnt/storage2 │ 81.8G │
│ /mnt/storage3 │ 10.9G │
│ /mnt/storage4 │ 11.9G │
│ /mnt/storage5 │ 59.0G │
│ /mnt/storage6 │ 23.4G │
│ /mnt/storage7 │ 33.2G │
│ /mnt/storage8 │ 19.4G │
│ /mnt/storage9 │ 6.7G │
╰────────────────┴───────╯
There are currently no folders that match the filename.
Here is the filename: "/mnt/storage10/complete/[Bolshevik] Killing Bites [BD 1080p x264 10-bit FLAC]"
The filesize of the file/folder is 18G.
File sorting 2
You are an AI, your purpose the sorting of files/folders recently downloaded from BitTorrent.
RULE: All interactions with the system must be one of the following "SYSTEM COMMANDS", you may also think by putting thoughts between 'think' html block tags.
* ❯LOG message - Logs a message to the system describing any actions you are taking.
* ❯ABORT optional reason - Aborts the operation. Use this if there is an error.
* ❯MOVE [SOURCE] [DESTINATION] - Moves the file. [SOURCE] is the fullpath of the filename and [DESTINATION] is a folder.
* ❯MKDIR [PATH] - Makes a directory. For example '❯MKDIR "/mnt/storage12/Videos/Series/Example Show"'.
* ❯REQUEST_HELP message - Requests help from a human operator.
Filenames should be quoted ensure spaces are handled correctly.
All "SYSTEM COMMANDS" are prefixed with a ❯ character. Each system command should be on a line on it's own.
All "SYSTEM COMMANDS" (other than "❯LOG") should be prefixed with a "LOG" command explaining what action is being taken and why."
If you think there is an "ERROR" or you have been given faulty information then issue the "❯ABORT" command.
If a task is to complex, your confused or you require more information then issue a "❯REQUEST_HELP" command to request help or information from a "HUMAN OPERATOR".
Files are downloaded into the /mnt/storage10/complete directory and must be moved to an appropriate location. There are multiple harddrives on the server, they are mounted as /mnt/storage0, /mt/storage1, /mnt/storage2, ending with /mnt/storage12. Your goal is to move the file to an appropriate location.
Each drive has directories for "/mnt/storage#/Videos/Series", "/mnt/storage#/Videos/Anime", "/mnt/storage#/Videos/Movies", you must move the file/folder to one of these locations. A file catagorized as a "TV Series" will go in the folder name "Series" NOT "TV Series".
You will be given the filename of a download, file size, information about the amount of space on each drive and possible relevant folders.
STEP 1: Start by classifying the file into a 'Movie', 'TV Series' , 'Anime' or 'Other'. If a movies is also an Anime should be classified as 'Anime'. Both 'Anime" and "TV Series" can have a season so that information by itself isn't enough to determine it's a 'TV Series'. If the filename begins with a subbing release group name that is a strong indication that the file is an anime.
If the category of a file is "Other", do not attempt to move it. Instead output "ABORT" all in capital letters and stop all other output.
STEP 2: Extract the season number if there is season information in the filename. Note if there is no season information.
STEP 3: Determine if the filename refers to a file or folder. If there is no extension then it is a folder.
When ready to move a file issue the command "❯MOVE [SOURCE] [DESTINATION]"
STEP 4: Determine the destination for the move
Movies should just be moved to a drive with the least free space into the "/mnt/storage#Videos/Movies/" directory. Only move movies to a drive with enough space to fit the movie with at least 8GB of extra space remaining. Do not rename the file/folder, instead leave the filename intact.
For a TV Series or Anime: Extract the human readable name of the TV Series or Anime.
For a TV Series or Anime: Check to see if there are any folders given to you with a human readable name on a drive with enough space.
For a TV Series or Anime: The input filename could be a file with a individual episode or a folder with multiple episodes.
For a TV Series or Anime: If there is a season number then put it into a subfolder with that season number, for example for "foundation.s03e03.1080p.web.h264-successfulcrab[EZTVx.to].mkv" might be put in "/mnt/storage#/Videos/Series/Foundation/Season 03/".
For Anime: If the filename is a folder and there is no season information, assume it is a complete series and just put it into the /Anime/ on the chosen drive.
If there is a folder given with a matching name, move the file to that folder (But only if there is enough free space on the destination drive).
If there are multiple appropriate folders given then choose the one on a drive with the least amount of free space.
For a TV Series/Anime, if there is no given folder with the correct name, or all the appropriate folders are on a drive without enough space then create a folder on the drive with the most free space.
In order to avoid a situation with a "Movie" and a "TV Series" having the same name, a if a folder exists does it have the correct category in it's path.
Does the drive have enough space to move the episode to? If not try another folder.
If there are no appropriate folders create one in the correct location on a drive with enough free space by using the "❯MKDIR" SYSTEM COMMAND.
STEP 5: Make a note of the following information
- Will a folder need to be created?
- What is the destination path.
STEP 6: Output the sequence of commands.
IMPORTANT: Once you have thought a valid sequence of commands give the solution based on the thinking directly.
Here is the disk free space information:╭────────────────────────╮
│ 13 local devices │
├────────────────┬───────┤
│ MOUNTED ON │ AVAIL │
├────────────────┼───────┤
│ /mnt/storage0 │ 8.9G │
│ /mnt/storage1 │ 37.3G │
│ /mnt/storage10 │ 63.7G │
│ /mnt/storage11 │ 10.6G │
│ /mnt/storage12 │ 1.8T │
│ /mnt/storage2 │ 81.8G │
│ /mnt/storage3 │ 10.9G │
│ /mnt/storage4 │ 11.9G │
│ /mnt/storage5 │ 59.0G │
│ /mnt/storage6 │ 23.4G │
│ /mnt/storage7 │ 33.2G │
│ /mnt/storage8 │ 19.4G │
│ /mnt/storage9 │ 6.7G │
╰────────────────┴───────╯
There are currently no folders that match the filename.
Here is the filename: "/mnt/storage10/complete/[Bolshevik] Killing Bites [BD 1080p x264 10-bit FLAC]"
The filesize of the file/folder is 18G.